
Model-View Controller

Advanced GUI concepts



MVC - Background

• Developed at Xerox Palo Alto Research Center (PARC)
• Central to the architecture of the multi-windowed 

Smalltalk environment used to create the first GUIs

• Approach taken was borrowed by the developers of the 
Apple Macintosh and many imitators in later years

• Input: mouse and keyboard

• Output: mix of graphics and textual components

•MVC is elegant and simple, but rather unlike the 
approach of traditional application programs



MVC paradigm

� Traditional paradigm…

� Input � processing � output

� MVC paradigm…

� Controller � model � view



MVC Schematic



Controller tasks

1. Receive user inputs from mouse and 
keyboard

2. Map these into commands that are sent 
to the model and/or viewport to effect 
changes in the view

� E.g., detect that a button has been 
pressed and inform the model that the 
button stated has changed



Model tasks

1. Store and manage data elements, such 
as state information

2. Respond to queries about its state

3. Respond to instructions to change its 
state

� E.g., the model for a radio button can be 
queried to determine if the button is 
pressed



View task

1. Implements a visual display of the model

� E.g., a button has a colored background, 
appears in a raised perspective, and 
contains an icon and text; the text is 
rendered in a certain font in a certain 
color



MVC Concepts – multiple views

� Any number of views can subscribe to the 
model

Button

model

View #1

View #2

View #3



MVC Concepts - model changes

� What happens when the model changes?

� E.g., a button is pressed (the state of the 
button has changed!)

� The model must notify the view

� The view changes the visual presentation 
of the model on the screen



Benefits of MVC Architecture

� Improved maintainability
� Due to modularity of software components

� Promotes code reuse
� Due to OO approach (e.g., subclassing, inheritance)

� Model independence
� Designers can enhance and/or optimize model 

without changing the view or controller

� Plugable look and feel
� New L&F without changing model

� Multiple views use the same data



MVC and Swing

� Swing designers found it difficult to write a 
generic controller that didn’t know the 
specifics about the view

� So, they collapsed the view and controller 
into a single UI (user interface) object 
known as a delegate (the UI is delegated 

to this object)

� This object is known as a UI delegate



MVC and Swing (2)



M - Swing Models

� In Swing, many models exist as interfaces
� Eg., ButtonModel, BoundedRangeModel, 

ComboBoxModel, ListModel, ListSelectionModel, 
TableModel, Document

� The interface is implemented in model classes

� Usually there is a default model class that is 
automatically associated with a component 
(whew!)
� E.g., DefaultButtonModel implements ButtonModel

� E.g,, AbstractDocument implements Document 
(PlainDocument is a subclass of AbstractDocument)



Example Program

DemoButtonModel.java



Example Program

DemoTableModel.java

Instead of passing the data directly to the JTable

object, we create a data model, pass the data to the

model, then pass the model to the JTable object.



Example Program

DemoTableModel2.java

Using a custom table model

(See source code and javadoc comments for details)



Renderers

� If not specifically defined:

� Boolean: rendered with a check box

� Number: right-aligned label

� ImageIcon: centered label

� Object: label that displays the object's string 

value, left-aligned



Example Program

DemoTableModel3.java

Using a custom cell renderer and custom cell editor

(See source code and javadoc comments for details)



Example Program

DemoTableModel4.java

Demonstrates sorting the table by clicking on column header

(See source code and javadoc comments for details)



Example Program

DemoInputValidation3.java

JTextField’s default data model is

PlainDocument. We can create a custom

data model for a JTextField by creating our

own data model and substituting it for

PlainDocument



VC – Swing Views and Controllers

� In Swing, the term look and feel (L&F) is common

� The look is the view

� The feel is the controller

� In practice, the view and controller parts of MVC are very 
tightly connected

� Swing combines the view and controller into a single 
entity known as a UI delegate

� Advantage: combining the view and controller allows the 
appearance and behaviour (L&F) of a component to be 
treated as a single unit, thus facilitating changes to the 
UI are possible

� This is known as pluggable look and feel (next 3 slides)



Example Program

DemoLookAndFeel.java

Shown earlier



Example Program

DemoTree.java

DemoTree2.java



ComponentUI Class

� The delegate part of a component is derived 
from an abstract class named ComponentUI

� Naming convention: remove the “J” from the 
component’s class name, then add “UI” to the 
end (e.g., JButton ButtonUI)



Design Challenge

� A corporation specializing in children’s games 

wishes to use a custom “corporate style” in all 

their applications

� As one example, they’d like the buttons for their 

applications to look as follows…

� Design a custom L&F for a JButton, as above



Example Program

DemoCustomButtonUI.java



Example Program

DemoCustomButtonUI2.java



Example Program

DemoCustomButtonUI3.java



Preferred Size Property

� An important task for a window manager is 
determining the size of widgets

� What happens when getPreferredSize is 
invoked on a JButton?

� JButton’s getPreferredSize method is 
inherited from JComponent

� Let’s see…



getPreferredSize (from JComponent.java)


