Model-View Controller

Advanced GUI concepts

MVC - Background

« Developed at Xerox Palo Alto Research Center (PARC)
 Central to the architecture of the multi-windowed
Smalltalk environment used to create the first GUIs

« Approach taken was borrowed by the developers of the
Apple Macintosh and many imitators in later years

* Input: mouse and keyboard
 Qutput: mix of graphics and textual components

*MVC is elegant and simple, but rather unlike the
approach of traditional application programs

MVC paradigm

Traditional paradigm...
Input = processing = output

MVC paradigm...
Controller 2 model -2 view

MVC Schematic

Display

<

Keyboard /

Mouse
Etc.

Controller tasks

Recelive user inputs from mouse and
keyboard

Map these into commands that are sent
to the model and/or viewport to effect
changes in the view

E.g., detect that a button has been
pressed and inform the model that the
button stated has changed

Model tasks

Store and manage data elements, such
as state information

Respond to queries about its state

Respond to instructions to change its
state

E.g., the model for a radio button can be
queried to determine if the button is
pressed

View task

Implements a visual display of the model

E.g., a button has a colored background,
appears in a raised perspective, and
contains an icon and text; the text is
rendered in a certain font in a certain

color

MVC Concepts — multiple views

Any number of views can subscribe to the
model

v [talic
View #1
Bold
. Button
o [talic model
View #2
~ |Bold

View#s 2 Halic
] Bold

MVC Concepts - model changes

What happens when the model changes?

E.g., a button is pressed (the state of the
button has changed!)

The model must notify the view

The view changes the visual presentation
of the model on the screen

Benefits of MVC Architecture

Improved maintainability
Due to modularity of software components

Promotes code reuse
Due to OO approach (e.g., subclassing, inheritance)

Model independence

Designers can enhance and/or optimize model
without changing the view or controller

Plugable look and feel
New L&F without changing model
Multiple views use the same data

MVC and Swing

Swing designers found it difficult to write a
generic controller that didn’'t know the
specifics about the view

So, they collapsed the view and controller
into a single Ul (user interface) object
known as a delegate (the Ul is delegated
to this object)

This object is known as a Ul delegate

MVC and Swing (2)

Display

==l

<

Swing component

UI delegate

Keyboard
Mouse
Etc.

M - Swing Models

In Swing, many models exist as interfaces

Eg., ButtonModel, BoundedRangeModel,

ComboBoxModel, ListModel, ListSelectionModel,
TableModel, Document

The interface is implemented in model classes

Usually there is a default model class that is
automatically associated with a component
(whew!)

E.g., DefaultButtonModel implements ButtonModel

E.g,, AbstractDocument implements Document
(PlainDocument is a subclass of AbstractDocument)

Example Program

DemoButtonModel.java

& DemoButto... [E[=]

[Disahle button

Example Program

DemoTableModel.java
& DemoT able H=] E3
Candy Bar Calories |Peanut-Free Price
Mr. Small |95 falze 1.75 N
Kispy kunch (4480 false 2.25
Kitch Katch 400 triue 275
Wunderbloat|1300 falze 265
Sararmilk 295 triue 1.25
Big Swede (300 false 31 ;I

Instead of passing the data directly to the JTable
object, we create a data model, pass the data to the
model, then pass the model to the JTable object.

Example Program

DemoTableModel2.java

& DemoT ableModel2 =] E3
Candy Bar Calories Peanu_t-Free Frice
Mr. Srnall 55 O 1.75]]
Kispy kunch 440 [224
kitch Katch 400 v E.TEJ
VWunderhloat 1300 [2 64
Saramilk 295 [v 1.25
Big Swede 300 H 31 j

Using a custom table model
(See source code and javadoc comments for details)

Renderers

If not specifically defined:
Boolean: rendered with a check box
Number: right-aligned label
Imagelcon: centered label

Object: label that displays the object's string
value, left-aligned

Example Program

DemoTableModel3.java

& DemoT ableModel2 H=] E3 & DemoT ableModel3 H=] E3
CandyBar | Calories |PeanutFree Frice Candy Bar | Calories |Peanut-Free Price
Mr. Small a5 [1.75 Mr. Small a5 [51.75| 4
Kispy Kunch 450 o 2.25 Kispy Kunch 450 N §2.25
Kitch Katch 400 vl 275 Kiteh Katch 400 [$2.Tﬁaan
Wiunderhloat 1300 [2.65 wunderbloat 1300 [§2 65
Saramilk 295 v 1.25 Saramilk 05 n 51.25
Big Sweds 300 !: 3.1;|] $3_1|:|;|

Using a custom cell renderer and custom cell editor
(See source code and javadoc comments for details)

Example Program

DemoTableModel4.java

& DemoT ableModel4 [_[3] x] & DemoT ableModel4 [_[3] x]
Candy Bar Calories Peanit-Free Frice Candy Bar Calories Peanit-Free Frice
Sararnilk 205 [51.25 Oh Hank 4410 [5425
hir. Srmall 45 u F1.74 Big Swede 300 N $3.10
Arrow ars [51.75 Kitch Katch 400 v/ 5275
Chewbacca 455 u $1.85 vunderhloat 1300 u 5265
Kispy Kunch 440 [52.25 Eat-Less 333 [5250
Red Rocket 300 [v| §2.35 Red Rocket 300 [v| §2.35
Eat-Less 333 u 240 Kispy Kunch 440 o $2.25
vunderbloat 1300 [5265 Chewbacca 456 [§1.85
Kitch Katch 400 vl 52.75 AFE Oy 375 u 51.75
Big Swede 300 [$3.10 Mr. Small 95 [51.75
Oh Hank 450 [$4.25 Saramilk 295 v 51.25

Demonstrates sorting the table by clicking on column header
(See source code and javadoc comments for details)

Example Program

DemolnputValidation3.java

E;jg D emol nputValidationd _ O]
urmeric field Alpha field
123 |V ahcABC

JlextkField's default data model is
PlainDocument. We can create a custom
data model for a J lexiField by creating our

own data model and substituting it for
PlainDocument

VC — Swing Views and Controllers

In Swing, the term look and feel (L&F) is common
The look is the view
The feel is the controller

In practice, the view and controller parts of MVC are very
tightly connected

Swing combines the view and controller into a single
entity known as a Ul delegate

Advantage: combining the view and controller allows the
appearance and behaviour (L&F) of a component to be
treated as a single unit, thus facilitating changes to the
Ul are possible

This is known as pluggable look and feel (next 3 slides)

Example Program

DemolLookAndFeel.java

[DemolookAndFeel [_To[=] [23 DemoLookéndFeel _ O] %] &3 DemoLookAndFeel M=l
File Edit | Miew | Font Help File Edit | view Font Help M Font Help
® Metal Metal [metal
O CDEMuotif (® CDEMotif CDEMOtif
O Windows _Windows ® \Windows
ello Java World Hello Java World Hello Java World
Current look and feel [Metal Current look and feel [COEMatif Current look and feel findows

Shown earlier

& DemoTree? !ﬂ
EXaI I I pl e P rOg ral I l [Symbols =1 Select Desired Look and Feel
@] Letters
@] Diaits ®

(30) CDEMotif
(1 1 Windows

DemoTree.java D:
[4
DemoTree2.java @Z
):
[

1

& DemoTree2 [_ 3] & DemoTree2 =] _.

A 4 Symhols
Select Desired Look and Feel _| Letters
) Matal EIJ Digits
SIS
s CDEMotif ------ - :
 ERaR
) wiind o I — .
e 5
...... -»
e i
...... » B
| e :
2 Lo g i
| B4 Punctuation
. | T |

00 oM S L ha —

ComponentUl Class

The delegate part of a component is derived
from an abstract class named ComponentUl

Naming convention: remove the “J” from the
component’s class name, then add “Ul” to the

end (e.g., JButton ButtonUl)

ComponentU] ButtonUl

BasicButtonUI

MenuButtonUI

MultiButtonUI

Design Challenge

A corporation specializing in children’s games
wishes to use a custom “corporate style” in all
their applications

As one example, they'd like the buttons for their
applications to look as follows...

Normal Armed Pressed

‘ KIDS STUFF I ‘ KIDSEUFF I KIDS STUFF

Design a custom L&F for a JButton, as above

Example Program

DemoCustomButtonUl.java

Eg_‘% DemoCustomB uttonUl

. Regular Button ||| Custorn Button

:g D emoCustomB uttonll

| Regular Button | Custom Button

w:g D emoCustomB uttonll

Fegular Button Custom Buttan

v

Example Program

DemoCustomButtonUI2.java

Feogular Button Custom Button

E"Eﬁ DemoCustomButtonUl2 !EI E

Feogular Button 'I Cl:stuumﬂuttun :I'

[23 D emoCustomButtonlUl 2 _ [O] x|
Feogular Button 'I Cl:stuumﬂuttun :I'

Example Program

DemoCustomButtonUI3.java

Preferred Size Property

An important task for a window manager is
determining the size of widgets

What happens when getPreferredSize is
invoked on a JButton?

JButton’s getPreferredSize method is
inherited from JComponent

Let's see...

getPreferredSize (from JComponent.java)

[**
* If the preferredSize has been set to a non-null value
* just returns it. If the UI delegate's getPreferredSize()
* method returns a non null value then return that; otherwise
* defer to the component's layout manager.
*
* @return the wvalue of the preferredSize property
* @see #setPreferredSize

*/
public Dimension getPreferredSize () Returns either...
{ / *Value set with setPreferredSize,
if (preferredSize '= null) { *Value from UI delegate, or
return preferredSize; *Value from Container
}

Dimension size = null;
if (ui '= null) {
size = ui.getPreferredSize (this) ;

}

return (size !'= null) ? size : super.getPreferredSize () ;

